200 research outputs found

    Policy analysis on Chinese overseas talents return to Shanghai : policy as the impetus for brain circulation

    Get PDF
    Ever since the Chinese overseas study and return policy was systematically proposed in 1992, the number of returnees has significantly increased. Both policymakers and scholars attach great importance to Shanghai - one of the most favourite cities for returnees. With respect to Chinese context, the thesis attempts to explore the policy impact on a new feature of human capital flows - brain circulation, especially the brain circulation to Shanghai. Hence, the thesis integrates policy analysis tools and factors for brain circulation, in order to achieve two objectives. First, starting from analyzing returnees’ policy at two different levels, aims at discovering the similarities and differences between the national policy and Shanghai municipal policy. Second, it attempts to link the findings of policy analysis to factors that contribute to brain circulation, in order to explore whether policy is the main impetus that has an effect on brain circulation. Based on a large amount of policy documents and part of statistical data, the thesis applies the qualitative research strategy to conduct the study. The thesis finds out that returnees’ policy has a strong focus on attracting highly skilled returnees and corresponds to the features of brain circulation in such a way, from which it could be concluded that Shanghai municipal policy consolidates the national policy and is more efficient for implementation and attracting targeted returnees. Based on the policy analysis, the thesis evaluates four factors (globalization, dual citizenship, no movement barriers and boundaryless career) that stimulate brain circulation. Through direct policy guidance or indirect policy influence, the thesis finds out that to most extent policy is the main impetus for those factors. In terms of current situation, returnees’ policy leads to a positive trend of brain circulation. Nonetheless, it still requires more studies and further developments

    The emerging role of E3 ubiquitin ligase RNF213 as an antimicrobial host determinant

    Get PDF
    Ring finger protein 213 (RNF213) is a large E3 ubiquitin ligase with a molecular weight of 591 kDa that is associated with moyamoya disease, a rare cerebrovascular disease. It is located in the cytosol and perinuclear space. Missense mutations in this gene have been found to be more prevalent in patients with moyamoya disease compared with that in healthy individuals. Understanding the molecular function of RNF213 could provide insights into moyamoya disease. RNF213 contains a C3HC4-type RING finger domain with an E3 ubiquitin ligase domain and six AAA+ adenosine triphosphatase (ATPase) domains. It is the only known protein with both AAA+ ATPase and ubiquitin ligase activities. Recent studies have highlighted the role of RNF213 in fighting against microbial infections, including viruses, parasites, bacteria, and chlamydiae. This review aims to summarize the recent research progress on the mechanisms of RNF213 in pathogenic infections, which will aid researchers in understanding the antimicrobial role of RNF213

    Desire for Success Awakens: Proof of Competence Restoration in a Non-competitive Environment

    Get PDF
    Pioneering studies reported that individuals who worked on a highly difficult task and experienced competence frustration beforehand would activate a restorative process and show enhanced autonomous motivation in a subsequent irrelevant activity. In this follow-up study, we explored the effect of prior competition outcome on one’s autonomous motivation in a subsequent non-competitive environment. According to our experimental manipulation, participants were randomly assigned to two treatment groups (a winning group and a losing group) and a control group. The experiment lasted for three sessions. Participants in the control group completed a single-player stop-watch (SW) task all along, while those in both treatment groups worked on a competitive SW task and competed for monetary rewards during Session 2 only. Electrophysiological data in Session 1 serve as the baseline and measure one’s trait-level autonomous motivation towards the SW game. For participants in the losing group, more pronounced difference wave of feedback-related negativity was observed in Session 3 compared with Session 1, suggesting enhanced autonomous motivation in Session 3. Such a pattern was observed in neither the winning group nor the control group. These results suggested that failure in a prior competition would activate one’s competence restoration in a subsequent non-competitive environment. Task difficulty and social competition are varied sources of competence frustration. Thus, our findings advanced understanding of the competence restorative process and helped clarify the dynamics between competition and human motivation

    In Vitro Selection in Serum: RNA-Cleaving DNAzymes for Measuring Ca2+ and Mg2+

    Get PDF
    This document is the Accepted Manuscript version of a Published Work that appeared in final form in ACS Sensors, © 2016 American Chemical Society after peer review and technical editing by publisher. To access the final edited and published work see Zhou, W., Zhang, Y., Ding, J., & Liu, J. (2016). In Vitro Selection in Serum: RNA-Cleaving DNAzymes for Measuring Ca2+ and Mg2+. Acs Sensors, 1(5), 600–606. https://doi.org/10.1021/acssensors.5b00306RNA-cleaving DNAzymes have been attempted as in vivo analytical probes and gene silencing reagents over the past two decades. Despite progress already achieved, concerns still exist regarding the activity of DNAzymes in biological fluids. An example is the low activity of the 10-23 DNAzyme in intracellular Mg2+ concentrations. To obtain DNAzymes that work optimally in biological samples, we herein report the first DNAzyme in vitro selection in undiluted human blood serum. The selection starts with a large DNA library containing 50 random nucleotides, and sequences that can be cleaved in serum were isolated and amplified. After deep sequencing analysis, 80% of the final library are a variant of the 8-17 DNAzyme (named 17EV1). The main difference between 17E and 17EV1 is a single mutation at the N-12 position of the catalytic core. 17EV1 is similar to 6-fold faster in serum than 17E, since 17EV1 is preferentially activated by Ca2+ and serum is rich in Ca2+ over Mg2+. On the other hand, 17E has a similar activity with Ca2+ or Mg2+. With this observation, a method for measuring the Ca2+/Mg2+ ratio was developed by combining the 17E and 17EV1 DNAzymes. This study demonstrates the feasibility of selecting DNAzymes in biological fluids and will facilitate the application of DNAzymes in bioanalytical chemistry and gene therapy.University of Waterloo; Natural Sciences and Engineering Research Council of Canada (NSERC); Foundation for Shenghua Scholar of Central South University; National Natural Science Foundation of China [21301195]; China Scholarship Council (CSC) [201406370116

    Landmark Tracking in Liver US images Using Cascade Convolutional Neural Networks with Long Short-Term Memory

    Full text link
    This study proposed a deep learning-based tracking method for ultrasound (US) image-guided radiation therapy. The proposed cascade deep learning model is composed of an attention network, a mask region-based convolutional neural network (mask R-CNN), and a long short-term memory (LSTM) network. The attention network learns a mapping from a US image to a suspected area of landmark motion in order to reduce the search region. The mask R-CNN then produces multiple region-of-interest (ROI) proposals in the reduced region and identifies the proposed landmark via three network heads: bounding box regression, proposal classification, and landmark segmentation. The LSTM network models the temporal relationship among the successive image frames for bounding box regression and proposal classification. To consolidate the final proposal, a selection method is designed according to the similarities between sequential frames. The proposed method was tested on the liver US tracking datasets used in the Medical Image Computing and Computer Assisted Interventions (MICCAI) 2015 challenges, where the landmarks were annotated by three experienced observers to obtain their mean positions. Five-fold cross-validation on the 24 given US sequences with ground truths shows that the mean tracking error for all landmarks is 0.65+/-0.56 mm, and the errors of all landmarks are within 2 mm. We further tested the proposed model on 69 landmarks from the testing dataset that has a similar image pattern to the training pattern, resulting in a mean tracking error of 0.94+/-0.83 mm. Our experimental results have demonstrated the feasibility and accuracy of our proposed method in tracking liver anatomic landmarks using US images, providing a potential solution for real-time liver tracking for active motion management during radiation therapy

    Effects of S. cerevisiae strains on the sensory characteristics and flavor profile of kiwi wine based on E-tongue, GC-IMS and 1H-NMR

    Get PDF
    The fermentation of kiwifruit into kiwi wine (KW) can represent a strategy to reduce the economic losses linked to fruits imperfections, spoilage, over production and seasonality. In the study, Pujiang kiwifruit, a China National Geographical Indication Product, was used as raw material to produce KW fermented by four commercial S. cerevisiae strains, namely Drop Acid Yeast, DV10, SY and RW. The sensory characteristics and flavor profile of KW were assessed by means of sensory evaluation, E-tongue, GC-IMS and 1H-NMR. KW fermented by RW strain obtained the higher sensory evaluation score. E-tongue could clearly distinguish the taste differences of KW fermented by distinct S. cerevisiae strains. A total of 128 molecules were characterized by GC-IMS and 1H-NMR, indicating that the combinations of multiple technologies could provide a comprehensive flavor profile of KW. The main flavor compounds in KW pertained to the classes of esters and alcohols. Several pathways were found to be differently altered by the fermentation with the different yeast strains, namely butanoate metabolism, glycerolipid metabolism, alanine, aspartate and glutamate metabolism, arginine biosynthesis, arginine and proline metabolism. The present study will facilitate screening suitable S. cerevisiae strains for KW production and provide a theoretical basis for large-scale production of KW

    Hepatoprotective Effect of Polyphenol-Enriched Fraction from Folium Microcos

    Get PDF
    Folium Microcos (FM), the leaves of Microcos paniculata L., shows various biological functions including antioxidant activity and α-glucosidase inhibitory effect. However, its therapeutic potential in acute liver injury is still unknown. This study investigated the hepatoprotective effect and underlying mechanisms of the polyphenol-enriched fraction (FMF) from Folium Microcos. FMF exhibited strong free radical scavenging activities and prevented HepG2/Hepa1–6 cells from hydrogen peroxide- (H2O2-) induced ROS production and apoptosis in vitro. Antioxidant activity and cytoprotective effects were further verified by alleviating APAP-induced hepatotoxicity in mice. Western blot analysis revealed that FMF pretreatment significantly abrogated APAP-mediated phosphorylation of MAPKs, activation of proapoptotic protein caspase-3/9 and Bax, and restored expression of antiapoptotic protein Bcl2. APAP-intoxicated mice pretreated with FMF showed increased nuclear accumulation of nuclear factor erythroid 2-related factor (Nrf2) and elevated hepatic expression of its target genes, NAD(P)H:quinine oxidoreductase 1 (NQO1) and hemeoxygenase-1(HO-1). HPLC analysis revealed the four predominantly phenolic compounds present in FMF: narcissin, isorhamnetin-3-O-β-D-glucoside, isovitexin, and vitexin. Consequently, these findings indicate that FMF possesses a hepatoprotective effect against APAP-induced hepatotoxicity mainly through dual modification of ROS/MAPKs/apoptosis axis and Nrf2-mediated antioxidant response, which may be attributed to the strong antioxidant activity of phenolic components

    A DNAzyme requiring two different metal ions at two distinct sites

    Get PDF
    Most previously reported RNA-cleaving DNAzymes require only a single divalent metal ion for catalysis. We recently reported a general trivalent lanthanide-dependent DNAzyme named Ce13d. This work shows that Ce13d requires both Na+ and a trivalent lanthanide (e.g. Ce3+), simultaneously. This discovery is facilitated by the sequence similarity between Ce13d and a recently reported Na+-specific DNAzyme, NaA43. The Ce13d cleavage rate linearly depends on the concentration of both metal ions. Sensitized Tb3+ luminescence and DMS footprinting experiments indicate that the guanines in the enzyme loop are important for Na+-binding. The Na+ dissociation constants of Ce13d measured from the cleavage activity assay, Tb3+ luminescence and DMS footprinting are 24.6, 16.3 and 47 mM, respectively. Mutation studies indicate that the role of Ce3+ might be replaced by G(23) in NaA43. Ce3+ functions by stabilizing the transition state phosphorane, thus promoting cleavage. G(23) competes favorably with low concentration Ce3+ (below 1 mu M). The G(23)-to-hypoxanthine mutation suggests the N1 position of the guanine as a hydrogen bond donor. Together, Ce13d has two distinct metal binding sites, each fulfilling a different role. DNAzymes can be quite sophisticated in utilizing metal ions for catalysis and molecular recognition, similar to protein metalloenzymes.Natural Sciences and Engineering Research Council of Canada (NSERC); Foundation for Shenghua Scholar of Central South University; National Natural Science Foundation of China [ 21301195]; Fellowship from the China Scholarship Council (CSC) [ 201406370116 to W.Z.]. Funding for open access charge: NSERC
    • …
    corecore